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ABSTRACT: Production of therapeutic monoclonal antibodies (mAbs) is a
complex process that requires extensive analytical and bioanalytical character-
ization to ensure high and consistent product quality. Aggregation of mAbs is
common and very problematic and can result in products with altered
pharmacodynamics and pharmacokinetics and potentially increased immuno-
genicity. Rapid detection of aggregates, however, remains very challenging
using existing analytical techniques. Here, we show a real-time and label-free
fiber optical nanoplasmonic biosensor system for specific detection and
quantification of immunoglobulin G (IgG) aggregates exploiting Protein A-
mediated avidity effects. Compared to monomers, IgG aggregates were found
to have substantially higher apparent affinity when binding to Protein A-
functionalized sensor chips in a specific pH range (pH 3.8−4.0). Under these
conditions, aggregates and monomers showed significantly different binding
and dissociation kinetics. Reliable and rapid aggregate quantification was
demonstrated with a limit of detection (LOD) and limit of quantification (LOQ) of about 9 and 30 μg/mL, respectively. Using
neural network-based curve fitting, it was further possible to simultaneously quantify monomers and aggregates for aggregate
concentrations lower than 30 μg/mL. Our work demonstrates a unique avidity-based biosensor approach for fast aggregate analysis
that can be used for rapid at-line quality control, including lot/batch release testing. This technology can also likely be further
optimized for real-time in-line monitoring of product titers and quality, facilitating process intensification and automation.

1. INTRODUCTION
Therapeutic monoclonal antibodies (mAbs) have been the
predominant segment of approved therapeutic proteins over
the past several years and still have significant potential for
growth.1,2 In 2021, six out of 14 protein-based drugs approved
by the US Food and Drug Administration (FDA) were mAbs.3

These new drugs show high efficiency and safety in disease
treatments, but treatment costs tend to be very high. The
highly complex and time-consuming production processes of
biopharmaceuticals are factors contributing to the high costs.4

Aggregation of mAbs during the manufacturing process has
been shown to reduce their therapeutic efficacy and enhance
immunogenicity, causing several adverse side effects, and is
thus a critical quality attribute in antibody bioproduction.5−8

The aggregates can be of various sizes, including small soluble
oligomers (dimers, trimers, tetramers, etc.) as well as larger
visible or subvisible nonsoluble aggregates that can be removed
by 0.22 μm filtration or mild centrifugation.9

During mAb manufacturing, depending on the mAb
characteristics, bioprocessing strategies, and external stressors,
aggregate levels can vary from about 0.5 to 60%.10,11 Aggregate
levels of 26 commercial therapeutic mAbs and 4 related
products analyzed using size exclusion chromatography (SEC)

were reported to vary from 0.1 to 13% in the final formulation,
and most of these samples had aggregate levels higher than
0.3%.12 There are no general regulatory limits for soluble
aggregates levels in protein-based pharmaceutical products,
and the acceptable maximum concentrations must be set on a
case-by-case basis to maintain safety and efficacy of the
product.13,14 Avoiding aggregate formation, however, remains a
major challenge, and improved process understanding, efficient
aggregate monitoring, and removal strategies are essential
aggregate management strategies in order to ensure the quality
of the product.9

While several methods have been reported for qualitative
and quantitative analysis of soluble protein aggregates (up to
100 nm), such as dynamic light scattering (DLS), nanoparticle
tracking analysis (NTA), differential scanning fluorimetry
(DSF), and transmission electron microscopy (TEM), SEC
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has been the gold standard technique for mAb aggregate
characterization.15,16 Modern analytical SEC instruments,
combined with multiple detectors such as multi-angle light
scattering (MALS) or mass spectrometry (MS), can provide
extensive information on product and aggregate concentrations
and molar masses without the need for column calibration.17

Sedimentation velocity analytical ultracentrifugation (SV-
AUC) is also widely used for the characterization of antibody
aggregates, including small soluble oligomers, because of its
wide dynamic range and high reliability.18,19 However, both
SEC and SV-AUC are time-consuming and require compli-
cated instrumentation and substantial expertise to operate. In
addition, neither of these techniques are suitable as process
analytical technology (PAT) tools20,21 as they do not allow for
rapid at-line, on-line, or in-line measurements of aggregates
during mAb production or purification. Despite significant
efforts to develop new techniques with a potential for rapid or
real-time process monitoring, including Raman spectrosco-
py,22,23 a real-time PAT tool for the analysis of protein
aggregates has not yet been demonstrated.
Here, we show a unique bioanalytical strategy for detection

and quantification of mAb aggregates based on specific analyte
recognition using a novel localized surface plasmon resonance
(LSPR)-based biosensor. This sensor technology (Figure 1A)
has recently been demonstrated to enable rapid, reproducible,
and reliable quantification of IgG titers in both upstream and
downstream process steps.24 LSPR is the result of collective
electron oscillations in noble metal nanoparticles, such as gold
nanoparticles (AuNPs), upon irradiation with visible light,
resulting in a pronounced extinction band. The position of this
so called LSPR band is highly dependent on the refractive
index in the vicinity of the nanoparticle surface. Binding of
mAbs to ligands (e.g., Protein A) immobilized on the
nanoparticle surface results in a concentration-dependent
shift of the LSPR band that can be measured spectroscopically.
This optical phenomenon is related to surface plasmon
resonance (SPR), which is used in several different high-
performing benchtop biosensor instruments for biomolecular
interaction analysis. Both LSPR and SPR are label-free
techniques that can monitor analyte binding to ligands
immobilized on a sensor surface (sensor chip). However,
whereas SPR is highly sensitive to fluctuations in temperature
and sample matrix composition, LSPR-based sensors are more

surface-sensitive and can operate under ambient condi-
tions.25,26 When combined with an appropriate and robust
surface chemistry on the sensor chip, specific analyte detection
in very complex samples is possible.27 The sensor signal
depends on the molecular weight and concentration of the
analytes and the analyte−ligand affinity. When the analyte
interacts with multiple ligands immobilized on the sensor chip,
the strength of the accumulated interactions is seen as an
enhanced apparent affinity. We hypothesize that this so-called
avidity effect is likely to occur for IgG aggregates (dimers,
trimer, and higher oligomers) because the oligomers can
interact with multiple IgG-binding ligands (Protein A) on the
sensor chip. As a result, the association (kon) and dissociation
(koff) rate constants for monomeric IgG and IgG aggregates
will differ, as illustrated in Figure 1B.

The sensor system used here comprises a flow cell that can
be connected either directly to a chromatography system or to
a separate liquid handling system with a pump. The sensor
chip is inserted into the flow cell and connected to an optical
unit for sensor readout using fiber optics. The low foot-print
optical unit contains a white light source for exciting the LSPR
and a detector for monitoring changes in the LSPR band upon
analyte binding. Here, we functionalized the LSPR sensor chips
with Protein A, which is a common IgG binding ligand, and
investigated the binding and dissociation kinetics of samples
containing IgG monomers and aggregates at different
concentrations and ratios.

Indeed, IgG aggregates were found to bind with higher
apparent affinity compared to monomers, which enabled rapid
detection and quantification of aggregates. By careful analysis
of both the total response and the kinetic profile, we could
detect and quantify aggregates with a limit of detection (LOD)
and limit of quantification (LOQ) of 9 and 30 μg/mL,
respectively, within a few minutes. In addition, simultaneous
measurements of monomer and aggregate concentrations
could be achieved. To our knowledge, this is the first
demonstration of a biosensor exploiting avidity effects
combined with advanced data analysis for quantification of
IgG variants. This novel biosensor technology offers rapid
analysis of mAb quality for quality control, batch and lot
release testing, or bioprocess monitoring that can significantly
reduce hold times and increase process efficiency, resulting in
more cost-effective production of biopharmaceuticals. The

Figure 1. (A) Illustration of the LSPR biosensor setup. (B) Illustration of the binding of monomers and aggregates to the sensor surface containing
gold nanostructures functionalized with Protein A. IgG monomers and aggregates have different molecular weights and sizes. Larger IgG aggregates
can bind to multiple Protein A immobilized on the sensor chip. Multivalent interactions result in a slower dissociation rate (koff) for aggregates
compared to monomers. (C) Photograph of a functionalized sensor chip.
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robust and flexible sensor technology can further improve
process understanding and facilitate development of strategies
for on-line or in-line detection of aggregates in both upstream
and downstream process steps to enable process automation
and intensification.

2. EXPERIMENTAL SECTION
2.1. Reagents and Materials. N-Ethyl-N′-(3-

dimethylaminopropyl)carbodiimide (EDC), N-hydroxysucci-
nimide (NHS), 4-morpholineethanesulfonic acid (MES),
ethanolamine, sodium citrate dihydrate, citric acid, and glycine
were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Protein A and phosphate buffered saline (PBS) tablets were
supplied by Medicago AB (Upsala, Sweden). LSPR sensor
chips were provided by ArgusEye AB (Linköping, Sweden).
Human IgG1 and mouse IgG2a were produced by BioInvent
International AB (Lund, Sweden). Mouse IgG2a was purified
using a Protein A capture step and collected as a mixture of
both monomers and aggregates. The aggregate content was
5.7% as determined by SEC. The produced IgG1 batch
contained a natural distribution of both monomers and
aggregates caused by normal processing conditions. Aggregates
and monomers were separated and purified using size
exclusion chromatography high performance liquid chroma-
tography (SEC-HPLC), resulting in a concentration and purity
of 4.5 mg/mL, 99% purity (monomer fraction) and 1.5 mg/
mL, 97% purity (aggregate fraction), respectively, which was
further verified using SEC-MALS as described below.
2.2. Characterization of IgG Aggregates Using SEC.

Monomer and aggregate contents of samples were verified
using a SEC setup with Multi-Angle Static Light Scattering,
Refractive Index, and UV detection (SEC-MALS-RI-UV). The
system includes an Agilent HPLC 1100 system with a UV−vis
diode array detector coupled with DynaPro Nanostar dynamic
light scattering, miniDAWN TREOS multi-angle light
scattering, and Optilab T-rEX refractive index detectors
(Wyatt Technology, Santa Barbara, CA). Refractive index
change was measured differentially with a GaAs laser at a
wavelength of 690 nm, and UV absorbance was measured with
the diode array detector at 280 nm. A Superdex 200 Increase
10/300 GL column was used for the separation of monomers
and aggregates. The flowrate was set at 1 mL/min, and 100 μL
of samples was injected for all measurements. The column was
kept at room temperature. The Agilent software was used to
control the HPLC, and the Wyatt Astra software was used for
data collection and analysis. Peak alignment and band
broadening correction between the UV, MALS, and RI
detectors were performed using the Astra software algorithms.
Percentages of aggregate present in the samples were validated
based on UV signals.
2.3. Ligand Immobilization. Carbodiimide (EDC/NHS)

coupling chemistry was used to immobilize Protein A on the
sensor chips. A (v/v 1:1) mixture of 20 μL of 0.4 M EDC and
0.1 M NHS was added to the sensor chips and incubated for
45 min. After rinsing with Milli-Q water (18.2 MΩ cm−1), 20
μL of 0.5 mg/mL Protein A solution was added and incubated
for 2 h. Deactivation of unreacted active esters was performed
using 20 μL of 1 M ethanolamine (pH 8.5) for 30 min. The
sensor chips were rinsed and stored in PBS buffer (140 mM
sodium chloride, 2.7 mM potassium chloride, and 10 mM
phosphate) pH 7.4, before being inserted into the LSPR
system.

2.4. LSPR Measurements. Sensorgrams were collected
using a fiber optical sensor system provided by ArgusEye AB
(Linköping, Sweden). The LSPR system comprises a white
light source, optical detection unit, and a flow cell. Sensor chips
functionalized with Protein A were docked into the flow cell
and equilibrated with PBS buffer using an HPLC pump for
about 3 min before sample injection. Samples were injected
into the flow cell through an injection valve, and sensor
responses were continuously recorded using the ArgusEye
software. A 1-min pulse of regeneration buffer (10 mM
Glycine-HCl pH 2.5) was used to regenerate the sensor chips
between sample injections. All experiments were performed at
room temperature under ambient conditions. Running buffers
were PBS (pH 7.4) and 10 mM citrate supplemented with150
mM NaCl and adjusted to different pH values (pH: 4.0, 3.8,
and 3.5). For kinetic measurements, samples were prepared in
the same running buffer, and for detection and quantification,
the samples were diluted in PBS.
2.5. Prediction Models for Aggregate and Monomer

Concentrations. To generate a prediction model for
identifying aggregate and monomer concentrations, a dimen-
sional reduction approach on the sensor response curve was
used. Briefly, sample responses were fitted to an exponential
model and the corresponding fit parameters were used as input
data in the prediction of aggregate and monomer concen-
trations. This approach was applied for association and
dissociation curves using two exponential equations, a + be−ct
and d + fe−gt, respectively, producing three fit parameters each.
These parameters were then used as input for training a neural
network to predict the corresponding aggregate and monomer
concentrations. In the training, the concentrations were passed
through a logarithm transformation for standardization of
output data. The neural network had seven layers; four linear
alternating with three scaled exponential linear units (SELU).
Validation using 14 data sets was caried out using
Mathematica,28 using functions such as NonlinearModelFit
and NetTrain. More details on the neural network training are
provided in the Supporting Information.

3. RESULTS AND DISCUSSION
3.1. Characterization of Monomer and Aggregate

Samples Using SEC. To develop and evaluate the sensor
technology and produce training data sets for the neural
network, IgG samples with a well-known concentration and
distribution of monomers and aggregates were produced. The
samples used here were obtained from the same production
batch, comprising a natural distribution of monomers and
aggregates. No additional stressors to trigger aggregate
formation were applied. Aggregates and monomers were
purified using SEC-HPLC into a monomer and aggregate
fraction. Protein aggregates have been reported to be sensitive
to storage conditions29 and can, in some cases, dissociate into
smaller aggregates and even monomers when reducing the
concentration by diluting the samples.30 The monomer and
aggregate content as well as size distribution of aggregates were
therefore analyzed using a SEC-MALS detector to obtain
accurate molar mass profiles and purities of the samples prior
use. SEC chromatograms of samples (0.45 mg/mL total IgG
concentration) from the monomer and aggregate fractions and
a mixture prepared to contain 20% aggregates and 80%
monomers are shown in Figure S1A,B (Supporting Informa-
tion). The samples from the aggregate fraction were found to
contain mainly IgG dimers and a negligible level of trimers and
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oligomers. The purity of the monomer and aggregate samples
were found to be 98.9 and 97.8%, respectively. Formation of
larger subvisible aggregates was not observed. New samples
with desired amounts of monomers and aggregates for use in
further experiments were prepared based on the purities
obtained from the SEC analysis.
3.2. Binding of IgG1 Monomers and Aggregates to

Protein A Sensor Chips at Different pH. Protein A is a
well-known immunoglobulin binding protein and has a very
high affinity for binding of IgGs, such as human IgG1, IgG2,
and IgG4, typically with an equilibrium constant KD ∼ 2 ×
10−9 M.31 The binding is optimal at pH 7.5−8 and is disrupted
at pH ≤ 3.5.32,33 To investigate whether IgG monomers and
aggregates show different binding and dissociation kinetics to
the Protein A sensor chips, sensorgrams at physiological as well
as mildly acidic pH values were recorded. The monomer and
aggregate samples used had identical concentrations of IgG, as
determined by UV spectroscopy. LSPR sensorgrams were
recorded for samples containing only IgG monomers (<1%
aggregates) or only IgG aggregates at pH 7.4, 4.0, 3.8, and 3.5
(Figure 2A,B,D,E, respectively). Not surprisingly, the inter-
action between Protein A and both IgG monomers and
aggregates was clearly pH-dependent. It was noteworthy that
while the binding profiles of monomers and aggregates at pH
7.4 (Figure 2A) were rather similar, they were significantly
different at the three lower pH values (4.0, 3.8, and 3.5)
(Figure 2B,D,E). The maximum response decreased, and the
dissociation rate increased for both monomers and aggregates
at pH ≤ 4 compared to that at pH 7.4 (Figure 2C). In
addition, the response at the end of the dissociation phase (at
300 s) also decreased when lowering the pH (Figure 2F).
Interestingly, samples with aggregates were found to have

higher maximum binding response (Figure 2C) and higher
response at the end of the dissociation phase (Figure 2F) at
acidic pH values compared to monomers. These differences
were most pronounced at pH 4.0 and 3.8 and clearly show that
IgG aggregates dissociate slower compared to monomers,
indicating a stronger binding of IgG aggregates to the Protein
A sensor chips because of avidity effects caused by IgG

aggregates binding to multiple Protein A molecules. The
multivalent interactions might occur as a result of binding to
several Protein A molecules on a single nanostructure or to
Protein A molecules immobilized on two or more adjacent
nanostructures. Considering the size of Protein A (∼2.5 nm)
and the size of the gold nanostructures on the sensor chip
(∼50 nm), each nanostructure could in theory carry more than
800 Protein A molecules if closely packed on the surface.
However, even with just 10% Protein A surface coverage, there
will be multiple IgG-binding ligands available on each discrete
nanostructure. In addition, Protein A has five homologous Fc-
binding domains.31,34 These binding domains have also been
demonstrated to interact with the Fab region of human
IgG.35,36 Therefore, with several potential IgG binding
domains positioned closely on the surface of the sensor chip,
there is a high probability for multivalent interactions where
IgG aggregates can interact with multiple immobilized Protein
A molecules, resulting in pronounced avidity effects. For larger
aggregates, we expect that the avidity effects would be even
more pronounced because of the larger number of possible
interactions between the immobilized Protein A and the
aggregate. Oxidation of methionine residues in the Protein A
binding Fc region of IgG1 (Met257 and Met433) can,
however, also influence Protein A binding affinity.37 In the
current study, all samples were subject to the same treatment
and storage conditions. Thus, no differences in oxidation
between monomer and aggregates samples were expected that
could influence the interpretation of the results.
3.3. Data Fitting and Comparison of Binding Kinetics.

We further evaluated the binding kinetics of the IgG monomer
and dimeric aggregate by fitting the observed binding curves to
a Langmuir 1:1 binding model38 (Figure 2). The model and
fitting procedure is described in detail in the Supporting
Information. The fitting shows very good correlation between
the model and the responses (R2 ≥ 0.98 for curve fittings). An
example of observed and fitted sensorgrams, curve fittings with
equations and R2 values, and the residual plot for IgG binding
at pH 3.8 is shown in Figure S2 (Supporting Information).
The larger residuals obtained for the first part of the binding

Figure 2. Effect of pH on binding and dissociation of IgG monomers and aggregates. (A) and (B) LSPR sensograms at pH 7.4 and pH 4.0,
respectively. (C) Maximum binding responses at different pH values. (D) and (E) LSPR sensograms at pH 3.8 and pH 3.5, respectively. (F)
Responses at 300 s at different pH values. Dashed black curves are fitting sensorgrams using a 1:1 Langmuir binding model. In all experiments, 1
mL of samples with total concentrations of 0.45 mg/mL was injected at a flow rate of 1 mL/min and one injection (n = 1) was performed.
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curve could be due to slight differences between the refractive
indexes of the sample and the buffer, which can be seen as a
small negative response at the beginning of the binding phase.
The obtained association (kon) and dissociation (koff) rate
constants and (apparent) affinity (KD) are presented in Table
1.
The association rates (kon) of both monomer and aggregate

samples at pH 7.4, 4.0, 3.8, and 3.5 were of the same order of
magnitude, ranging from 1.7 × 104 to 3.6 × 104 M−1 s−1 and
are in good agreement with kon values at pH 7.4 demonstrated
in other reports.39,40 Very slow koff (2.9 × 10−5 s−1) and high
(apparent) affinity (KD = 1.3 × 10−9 M) of IgG at pH 7.4 also
agreed well with the well-known strong binding between
Protein A and human IgG (KD ∼ 2 × 10−9 M).31 At pH 7.4,
aggregates and monomers had similar binding kinetics, and
their binding responses typically reached the maximum
binding capacity of the sensor chip, indicating similar surface
concentrations of IgG molecules on the sensor surface in both
cases. This observation most likely suggested that the
aggregates, which were mostly dimers, interacted with or at
least blocked two ligand sites on the sensor surface. It is also

possible that some of the dimers blocked only one ligand site
but orienting the dimer partly outside the LSPR sensing depth,
therefore generating a similar response as a monomer. The
sensing depth of the LSPR nanostructures used here is about
15−20 nm.41,42 A single IgG molecule (∼12 nm) bound to a
protein A ligand (∼2.5 nm) consequently occupies almost the
entire sensing depth.

When comparing dissociation rates (koff) of monomers and
aggregates, only minor differences were seen for the two
species at pH 7.4 and 3.5. At pH of 3.5, most IgG molecules
had dissociated from the sensor surface after 300 s with similar
dissociation rates for both monomers and aggregates. In
contrast, at pH 3.8 and 4.0, the koff values for aggregates were
approximately four times lower than those for monomers.
Consequently, the overall (apparent) affinity (KD) for binding
of IgG aggregates to the ligands on the sensor surface appeared
to be enhanced about five times for aggregates, indicating
pronounced avidity due to multivalent binding. Thus, it was
apparent that IgG aggregates were bound more tightly to the
sensor surface than the corresponding monomers. The greater
apparent affinity can likely be explained by the accumulated

Table 1. LSPR Binding Kinetics and Affinities for IgG Monomers and Aggregates Binding to Protein A Sensor Chips at
Different pH Values Obtained Using a Langmuir 1:1 Binding Model

monomers (M) aggregates (A) monomers versus aggregates

kon (M−1 s−1) koff (s−1) KD (M) kon (M−1 s−1) koff (s−1) KD (M) kon M/A koff M/A KD M/A

pH 7.4 2.2 × 104 2.9 × 10−5 1.3 × 10−9 2.5 × 104 2.9 × 10−5 1.2 × 10−9 0.9 1.0 1.2
pH 4.0 3.1 × 104 4.0 × 10−3 1.3 × 10−7 3.6 × 104 9.2 × 10−4 2.6 × 10−8 0.9 4.3 5.0
pH 3.8 3.0 × 104 1.0 × 10−2 3.3 × 10−7 3.6 × 104 2.4 × 10−3 6.5 × 10−8 0.8 4.2 5.1
pH 3.5 1.7 × 104 1.1 × 10−2 6.6 × 10−7 2.8 × 104 9.9 × 10−3 3.5 × 10−7 0.6 1.1 1.9

Figure 3. (A) and (B) Sensorgrams of nine different samples with various aggregate levels (1 to 98%) using PBS pH 7.4 and citrate 50 mM, 150
mM NaCl, pH 3.8 as running buffers. (C) Maximum response versus aggregate level. (D) and (E) Derivative curves of sensorgrams in (A) and (B),
respectively. (F) Maximum derivative and (G) derivative at 112 s versus aggregate level. (H) Response at 300 s versus aggregate level at pH 7.4
(black square) and pH 3.8 (red circle), n = 2, error bars: standard deviation. In all experiments, 0.1 mL of samples with a total concentration of 0.45
mg/mL was injected at a flow rate of 1 mL/min.
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binding strength by multiple binding sites involved in the
interaction between IgG aggregates and the immobilized
ligands. These findings are also consistent with other reports,
demonstrating avidity effects upon binding of IgG oligomers to
Fc receptors.43,44

3.4. Effects of Aggregate Levels on Ligand Binding
Properties. To explore the effect of aggregate levels on the
binding and dissociation curves, nine monomer samples spiked
with different amounts of aggregates, ranging from 1 to 98%,
were injected into the LSPR system using two different
running buffers, PBS pH 7.4 and 10 mM citrate pH 3.8. As
shown by SEC, even the monomer fraction contained some
aggregates, although at a rather low concentration (1%).
Samples prepared using only the monomer fraction are
consequently referred to as 1% aggregate from here on.
Binding/dissociation curves for the samples with different
aggregate contents and their corresponding first derivatives are
shown in Figure 3A,B,D,E, respectively.
By visual inspection of the data, the differences between

samples with different aggregate contents were clearly more
distinct when using a pH 3.8 running buffer compared to those
at pH 7.4. At pH 7.4, samples only differed with respect to the
maximum binding response and magnitude of their derivative,
whereas at pH 3.8, samples with different compositions could
also be identified from the large differences in the dissociation
phase and corresponding derivatives. Maximum responses and
the responses at 300 s (i.e., at the end of the dissociation
phase) plotted against the aggregate levels are shown in Figure
3C,H, respectively. The presence of aggregates had a larger
effect on both the maximum responses and the response at 300
s at pH 3.8 compared to that at pH 7.4. Noticeably, at pH 3.8,
a clear difference between the sensor responses from samples

with 5 and 1% aggregates was seen, even at the relatively low
total IgG concentration used here (0.45 mg/mL) (Figure
3C,H). The increase in these responses due to higher amounts
of aggregates could be explained by the greater apparent
affinity (∼5 times) for aggregates (KD = 6.5 × 10−8 M)
compared to monomers (KD = 3.3 × 10−7 M) when binding to
the sensor chips, as discussed above (Table 1). Similarly, the
presence of aggregates had very minor or no effect on the
maximum derivatives (Figure 3F) and derivatives at the
beginning of the dissociation phase (at 112 s) (Figure 3G) at
pH 7.4. In contrast, at pH 3.8, derivatives at 112 s were greatly
increased, from −8.5 for 1% aggregate to 0 for 98% aggregate,
confirming the slower dissociation of aggregates compared to
monomers.

We further investigated the sensor response when exposed
to two different types of IgGs by comparing samples of human
IgG1 with 5% of aggregates and mouse IgG2a containing 5.7%
aggregates. The sensorgrams (Figure S3) showed similar
characteristics for both samples with respect to both the
maximum response and the dissociation rate, indicating that
the avidity effect was not limited to human IgG1. The slightly
higher binding response at 300 s for mouse IgG2a could
potentially be due to the slightly higher aggregate content in
this sample.
3.5. Aggregate Detection and Quantification. To

further improve possibilities to detect aggregates, we used
principal component analysis (PCA), focusing on the three
samples with the lowest levels of aggregates, 1, 2, and 5%
(Figure S4). The result showed that samples containing 1 and
2% aggregates clustered into the same group on the negative
side of PC1, while all samples with 5% aggregates appeared in
the positive area (score plot, Figure S4C). Binding responses

Figure 4. (A) Sensorgrams of 27 samples with varying total IgG concentrations (0.1125, 0.25, and 0.45 mg/mL) and aggregate levels (from 1 up to
98%) used for data fitting. (B) Sensorgrams of seven control samples. All sensorgrams were collected using the same sensor chips. (C) Binding
curve obtained from 27 standard samples by plotting responses at 300 s against aggregate concentrations and nonlinear regression fitting. (D)
Linear range extracted from the binding curve in (D) (samples with responses at 300 s higher than 550 pm were excluded). (E) Regression
correlation between predicted and expected concentrations of aggregate for seven control samples. (F) Response, predicted, and expected
concentrations of aggregates.
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from 190 to 300 s were higher for samples with 5% aggregates
compared to samples with 1−2% aggregates (loading plot,
Figure S4D). Derivatives from 110−122 s gave similar but
smaller contributions to the group separation. The PCA
analysis consequently allows for detection and discrimination
of aggerate levels down to 5% at a total IgG concentration of
0.45 mg/mL, corresponding to an aggregate concentration of
23 μg/mL.
To further explore the possibilities to also quantify the

concentration of aggregates, sensorgrams from 34 different
samples with varying aggregate levels (from 1 to 98%
corresponding to 1.25 to 440 μg/mL) and total IgG
concentrations from 0.125 to 0.45 mg/mL were collected.
Twenty-seven sensorgrams (Figure 4A) were used for data
fitting and seven sensorgrams (Figure 4B) were left out and
used as control samples to evaluate the prediction of aggregate
concentrations. Distinct binding patterns were observed for all
the samples having different combinations of total concen-
trations and aggregate levels. For the sample with the lowest
aggregate concentration (1.25 μg/mL), the response at the end
of the dissociation phase was close to zero (Figure 4A),
suggesting that the monomers were completely dissociated
from the sensor surface. In contrast, aggregates bound more
tightly to the surface, and therefore, the baseline at the end of
the dissociation phase (t = 300 s) was higher for samples
containing higher aggregate concentrations. The responses
toward the end of the dissociation phase were therefore
anticipated to be solely related to the concentration of
aggregates in the samples. Responses at 300 s for the 27
samples showed an excellent correlation to the concentration
of aggregates (R2 = 0.9954, Figure 4C), irrespective of the total
IgG concentrations.
The limit of detection (LOD) and limit of quantification

(LOQ) were determined from the residual standard deviation
(σ) and the slope (S) of the calibration curve obtained in the
range of 9 to 21 μg/mL. LOD (3.3σ/S) and LOQ (10σ/S)

were approximately 9 and 30 μg/mL, respectively, with a
dynamic range of 9−200 μg/mL, corresponding to aggregates
levels of 0.2−4.4% in a sample with 4.5 mg/L IgG. At a total
IgG concentration of 10 mg/mL, which is a typical
concentration in many process steps, aggregate levels
≤0.09% should thus be possible to detect. Methods to further
increase the dynamic range to include higher aggregate
concentrations could include shorter contact times, lower
Protein A surface concentrations, or alternative IgG-binding
ligands.

A linear fit (Figure 4D) was used to predict the aggregate
concentration of seven control samples with known concen-
trations. A high correlation (R2 = 0.9781, Figure 4E) was
obtained between predicted and expected (known) concen-
trations using linear regression analysis with relatively low
errors except for sample C7 which had very a high prediction
error (169%) as a result of a very low aggregate concentration
(3.6 μg/mL) (Figure 4F). An even more extensive data set
comprising 65 sensorgrams (Figure S5A) was also collected to
further validate the approach for simultaneous quantification of
aggregates and monomers, focusing on the lower range of
aggregate levels (from 1 to 20%). In addition to generate data
for the neural net training, the large number of sensorgrams
further confirms the high reproducibility and robustness of the
technique.

A simple logarithmic nonlinear fitting using maximum
responses and linear fitting using responses at 300 s (Figure
S5B,C) was evaluated for the concentration prediction. Good
correlation coefficients between predicted and expected
concentrations of 11 validated samples were obtained for
aggregates (R2 = 0.8783) and monomers (R2 = 0.9364)
(Figure S5D,E). Mean prediction errors of approximately 11%
were obtained for monomers, whereas aggregate predictions
gave a mean error of 21% for two samples having
concentrations higher than the LOQ (30 μg/mL) (Table S1,
Supporting Information).

Figure 5. (A) Illustration of the exponential fit using only the dissociation phase. Three fit parameters d, f, and g obtained from the exponential fits
were used for building a prediction model using neural network training. (B) and (C) Regression correlations of predicted and expected
concentrations of monomer and aggregate for training data set (51 samples). (D) and (E) Regression correlations of predicted and expected
concentrations of monomer and aggregate for validation data set (14 samples).
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To further improve the accuracy and precision for low
aggregate concentrations, a neural network curve fitting
approach was explored. The method was first evaluated using
only the dissociation phase (Figure 5A). High regression
correlation coefficients of expected and predicted concen-
trations were obtained for both aggregates (R2 = 0.9775) and
monomers (R2 = 0.9821) for 51 samples in the training set
(Figure 5B,C). Cross-validation using the training set gave
mean errors of 19 and 6% for aggregate and monomer
concentrations, respectively. For the validation set containing
14 samples, aggregate prediction also gave a high correlation
(R2 = 0.7534) between predicted and expected values, even
when all the concentrations were lower than 30 μg/mL (Figure
5D). As expected, prediction of monomers was more accurate
(R2 = 0.951) than aggregates due to the substantially higher
concentrations of monomers in the samples (Figure 5E). Mean
errors calculated from Tables S2 and S3 (Supporting
Information) for aggregate and monomer prediction in 14
samples in the validation data set using the dissociation phase
were 32 and 14%, respectively. Data fitting and net training
using both the association and dissociation phase (Figures S6−
S8, Supporting Information) were found to have better
monomer prediction with a mean error of 6% but generated
a slightly higher mean error (34%) for aggregate prediction
compared to net training using only the dissociation phase
(Tables S2 and S3, Supporting Information). We expect that
the performance of the data fitting can be further improved by
increasing the size of the training data set.

4. CONCLUSIONS
We have demonstrated a fiber optical nanoplasmonic biosensor
exploiting avidity effects for rapid and sensitive and
simultaneous quantification of monomers and aggregates in
the production of therapeutic mAbs. The avidity effects were
found to drastically influence the association and dissociation
kinetics for binding of the IgG species in the samples to
Protein A sensor chips. The effect on the binding was highly
dependent on the relative concentrations of aggregates and
monomers, which enabled detection of aggregates with an
LOD of 9 μg/mL and a LOQ of 30 μg/mL by using only one
response data point at 300 s for the analysis. Curve fitting and
neural net training using either the dissociation phase or the
whole sensorgram significantly improved the accuracy in the
detection of concentrations lower than 30 μg/mL. Simulta-
neous measurements of monomer and aggregate concen-
trations could also be achieved with high accuracy and
precision, and therefore, relative amounts of aggregates can be
deduced without the need to measure total mAb concen-
trations using other methods. The presented approach is both
robust and very rapid compared to conventional techniques for
aggregate detection. Therefore, the proposed methodology can
be used as a rapid tool for monitoring batch variations, product
storage stability, or for at-line up- and downstream process
monitoring. By further combining the detection concept based
on avidity effects and the possibility for in-line integration of
the LSPR-sensor technology, this approach can facilitate the
development of PAT for real-time detection of IgG monomers
and aggregates in downstream bioprocess unit operations.
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